IMMERSIVE VISUAL TECHNOLOGIES FOR SAFETY-CRITICAL APPLICATIONS

En moi SAFE

Marie Sklodowska-Curie Innovative Training Network

@immersafe

@ImmerSafe

NP2

NP3

Embedded systems for safety-critical applications User experience, system performance and Immersive visual technologies organizational change

Light field sensing and processing NP1 Multimodal 3D reconstruction from mobile sensors Depth-corrected head-up display visualization Reliable and fast communication of immersive visual data

PROJECT GOALS

The main objective of the project is to train multidisciplinary experts on core imaging technologies, and the related systems and human factors for the successful design of the safety-critical applications of the future.

Dependability analysis Methods and architectures for real time implementation

Integration towards use cases Ultra-durable embedded transparent display

TRAINING STRUCTURE

Fatigue induced by use of IVT

User ability to receive information from IVT Relation of IVT to organisational changes

INDIVIDUAL RESEARCH PROJECTS

- Vision enhancement in extreme environmental conditions
- Accommodation and convergence cues on transparent display media
- Multi-camera surround view visualisation and multi-modal sensor integration
- Ultra-reliable communications of immersive visual data
- Dependability in vision-centered systems
- Assessing the effectiveness of immersive visual technologies in an industrial machine framework

- Evaluating the Quality of Experience of immersive visual systems in operative control rooms
- How do immersive visual technology affect task performance in control centres?
- Organisational changes caused by immersive visual technologies in safety-focused organisations
- Industrial visualisation using see-through interfaces
- Embedded system for enhanced surround vision in work machines
- Augmented and virtual reality systems in operative control rooms
- Real-time image processing and analysis of UAV videos for safety-critical applications
- Compression methods for geometry-enhanced light field images under safety-critical conditions
- Rugged multicoloured transparent displays

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 764951.